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Abstract—Aerial-Ground Person Re-identification (AGPReID)
holds significant practical value but faces unique challenges due
to pronounced variations in viewing angles, lighting conditions,
and background interference. Traditional methods, often involv-
ing a global analysis of the entire image, frequently lead to inef-
ficiencies and susceptibility to irrelevant data. In this paper, we
propose a novel Dynamic Token Selective Transformer (DTST)
tailored for AGPReID, which dynamically selects pivotal tokens
to concentrate on pertinent regions. Specifically, we segment the
input image into multiple tokens, with each token representing
a unique region or feature within the image. Using a Top-k
strategy, we extract the k most significant tokens that contain
vital information essential for identity recognition. Subsequently,
an attention mechanism is employed to discern interrelations
among diverse tokens, thereby enhancing the representation of
identity features. Extensive experiments on benchmark datasets
showcases the superiority of our method over existing works.
Notably, on the CARGO dataset, our proposed method gains
1.18% mAP improvements when compared to the second place.
In addition, we comprehensively analyze the impact of different
numbers of tokens, token insertion positions, and numbers of
heads on model performance.

Index Terms—Aerial Ground Person Re-identification, Top-k
Token Selective Transformer, Attention Mechanism

I. INTRODUCTION

Person Re-identification (ReID) is crucial for surveillance
and tracking, identifying individuals across camera views. Ad-
vances in deep learning have improved feature extraction and
matching accuracy [1]–[5]. However, most methods rely on
global image features, making them vulnerable to background
noise and irrelevant regions, particularly in cases of occlusion
or complex backgrounds. This limits their effectiveness in
diverse real-world scenarios with cross-camera variations and
environmental inconsistencies [6]–[8].

To address these challenges, recent studies have empha-
sized the importance of more targeted and efficient feature
extraction approaches. For instance, Zhang et al. [9] propose
a separable attention mechanism to focus on discrimina-
tive regions while suppressing irrelevant background features.
Tang et al. [10] introduce adaptive context-aware selection to
dynamically enhance feature representations under complex
conditions. Similarly, Qiu et al. [11] develop a salient feature
extraction framework that prioritizes key object parts even in
scenarios involving significant occlusion. These advancements
show promising progress in overcoming the limitations of
the reliance on global feature in View-homogeneous person

Fig. 1: A straightforward description of Aerial-Ground Per-
son Re-identification (AGPReID) involves the utilization of
an aerial-ground mixed camera network, enabling matching
across aerial-aerial, ground-ground, and aerial-ground scenar-
ios. Thus, it presents greater challenges and practical appli-
cations compared to traditional single-camera person ReID
methods.

ReID. However, when applied to Aerial-Ground Person Re-
identification (AGPReID) tasks (View-heterogeneous person
ReID), which are valuable in real-world scenarios for ad-
dressing complex aerial-to-ground matching challenges and
encompassing diverse camera perspectives [12], these methods
often fall short. Fig. 1 demonstrates the AGPReID problem.
This discrepancy may stem from the scale diversity and re-
dundancy characteristics observed in large-area observational
scenarios, leading to notable appearance differences for the
same individual across various cameras. Therefore, there is an
urgent need to develop innovative strategies that effectively
address these specific challenges in AGPReID.

To this end, we propose a Dynamic Token Selective Trans-
former (DTST) that enhances identity representation by focus-
ing on the most critical spatial features. Our DTST module
contains two steps: First, a Predictor Local-Global network
computes relevance scores for each token, integrating local and
global spatial semantics using multi-head attention. Second, a
Perturbation-Based Top-K Selector chooses the most relevant
tokens based on the predicted scores, ensuring robustness by
adding noise perturbations. The selected tokens are combined
with a global class token, enabling efficient and compact rep-
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Fig. 2: Illustration of the proposed Dynamic Token Selective Transformer (DTST) framework. The framework incorporates N
Token Selection view-decoupled transformer (VDT) blocks, where each block consists of an encoder layer and a visual token
selector. The loss function is designed to account for both view-related and view-unrelated features, while an orthogonal loss
ensures that these features remain independent from each other, further enhancing feature disentanglement and robustness.

Fig. 3: The Illustration of Visual Token Selector (VTS). The process involves selecting the Top-K informative tokens from the
original token set to be used in the subsequent feature aggregation.

resentation while reducing computational overhead. Extensive
experiments validate our method’s state-of-the-art performance
on AGPReID tasks, showcasing its robustness in handling
occlusions, complex backgrounds, and viewpoint variations.

Our main contributions are as follows.

• We propose a Top-k Token Selective Transformer for
AGPReID, to better model identity representation spa-
tially. We further comprehensively study the impact of
the insertion position and the number of tokens selected
on the model’s performance.

• To eliminate the interference of irrelevant tokens, our
method adaptively selects the most critical tokens based
on the top-k selective mechanism, making the long-range
modeling more effective and compact.

• Extensive experiments on various datasets demonstrate
that our proposed model achieves state-of-the-art perfor-
mance on AGPReID tasks.

II. RELATED WORK

A. Person Re-identification

Person re-identification (ReID) is essential for retrieving
images of the same individual across different camera views.

It can be categorized into view-homogeneous and view-
heterogeneous ReID. View-homogeneous ReID pertains to
scenarios with a single camera type, such as ground-only or
aerial-only networks, while view-heterogeneous ReID such
as Aerial-Ground Person ReID (AGPReID), deals with net-
works featuring diverse camera perspectives. In terms of
view-homogeneous ReID, ground-only camera networks have
received more attention compared to aerial-only networks. For
example, some ground-only datasets are well established such
as Market1501 [13] and MSMT17 [14]. As a consequence,
a multitude of methods have been proposed, such as hand-
crafted feature-based, CNN-based, and transformer-based ap-
proaches, facilitating the development of ReID. However, these
methods overlook the significant view differences between
aerial and ground cameras, leading to poor performance
faced with diverse view-point scenarios. Fortunately, view-
heterogeneous ReID can address this issue. Recently, re-
searchers in [12] propose the AG-ReID dataset, which includes
identity and attribute labels, and put forward an attribute-
guided model. Another work extends this by introducing
the CARGO dataset with multiple matching scenarios and
proposes a view-decoupled transformer (VDT) that decouples
view-related features using hierarchical separation and orthog-



onal loss, improving performance and reducing reliance on
extensive attribute labeling [15]. However, this approach does
not dynamically select key tokens related to the target object,
fails to reduce redundant computation, and lacks enhanced
model capability to focus specifically on critical regions of
interest.

B. Token Selection in Vision Transformers

Token selection is crucial for addressing redundancy issues
in transformer-based vision models, particularly in tasks in-
volving dense visual data. Despite their success, transformers
often suffer from computational inefficiencies due to the need
to process numerous redundant tokens. Token selection meth-
ods can effectively mitigate this issue by focusing on only the
most informative tokens for further processing. For example,
STTS [16], as a representative work, utilizes token selection
to enhance computational efficiency by dynamically reducing
the number of tokens processed at each transformer layer.
These approaches have demonstrated substantial reductions in
computation while maintaining performance. To address the
challenge of differentiability in token selection, a perturbed
maximum strategy is introduced [17], enabling top-K selection
to be differentiable, thereby facilitating end-to-end training.
Building on the principles of differentiable top-K selection
[18], we develop a lightweight token selection module specif-
ically designed to enhance temporal-spatial modeling in our
view-decoupled transformer. By selecting only the most infor-
mative tokens, this module reduces redundancy and improves
both efficiency and performance, especially in modeling visual
data across multiple viewpoints.

III. METHOD

A. Formulation

Aerial-Ground Person ReID aims to match images from
ground- or aerial-only camera networks. In a training dataset
Dtr = {(xi, yi, vi)}|D

tr|
i=1 , each instance consists of an image

xi depicting a person, along with identity label yi and view
label vi. The view label vi ∈ {va, vg} is determined by
the known camera labels in D, distinguishing between aerial
(va) and ground (vg) views. A substantial distinction in
views between va and vg results in a biased feature space,
characterized by low intra-identity similarity and high inter-
identity dissimilarity.

B. Overview

As illustrated in Fig.2, we propose a token enhanced frame-
work based on the View-Decoupled Transformer (VDT) to
tackle the view discrepancy challenge in AGPReID. Input
images that include both aerial (va) and ground (vg) views
are tokenized into a sequence of tokens. To encompass both
global and view-specific details, meta tokens and view tokens
are added to these image tokens before they are inputted into
our VDT.

Comprising N blocks, the VDT framework initiates each
block with a conventional self-attention encoding process,
succeeded by a subtraction operation between meta and view

tokens to explicitly disentangle view-specific characteristics
from the overarching ones. This facilitates a distinct segrega-
tion of features influenced by diverse viewpoints.

Subsequently, the updated meta and view tokens produced
by the VDT are supervised by identity and view classifiers. To
enforce the independence of meta and view tokens, we intro-
duce an orthogonal loss, facilitating the successful separation
of view-based and view-agnostic attributes. To select the most
critical tokens, a visual token selector module is proposed to
enhance the identity representation, with further elaboration
provided in subsequent sections.

We introduce the Visual Token Selector (VTS), as shown in
Fig. 3, designed to dynamically refine the token representation
by selecting the most informative tokens for subsequent anal-
ysis. This module aims to reduce redundancy and enhance the
model’s ability to focus on critical regions, thereby optimizing
computational efficiency while preserving feature quality. The
VTS mechanism can be understood as a dynamic token
selection process that leverages attention scores to determine
the importance of each token.

For a sequence of tokens {ti}Mi=1, where M is the number
of tokens, the VTS computes importance scores for each token
si using a lightweight attention mechanism. The score si is
obtained as:

si = softmax
(
t⊤i WqW

⊤
k ti√

d

)
,

where ti is the i-th token, Wq and Wk are learnable matrices
representing query and key transformations, and d is the
dimensionality of the tokens. The softmax function normalizes
the scores to ensure they sum to 1, thus creating a probabilistic
distribution over the tokens.

These tokens are then ranked based on their importance
scores, and we select the top-K tokens with the highest
scores, where K < M is a hyperparameter that controls the
number of tokens retained. Mathematically, this selection can
be represented as:

{tselected
i } = TopK({si}Mi=1),

where TopK(·) returns the indices corresponding to the top-
K scores. The retained tokens, {tselected

i }, are then passed to the
subsequent layers or directly to the final classification head.

To ensure that the VTS can be used in an end-to-end
training fashion, we adopt a differentiable approach for the
token selection. Specifically, we use a continuous relaxation
of the TopK function by employing a Gumbel-Softmax trick:

ŝi =
exp((si + gi)/τ)∑M

j=1 exp((sj + gj)/τ)
,

where gi are Gumbel noise samples and τ is the temperature
parameter that controls the smoothness of the approximation.
This differentiable approximation allows the selection of to-
kens to be included in backpropagation, facilitating end-to-end
optimization.



By incorporating the Visual Token Selector, we achieve
several key benefits:

• Reduce redundancy: By selecting only the most infor-
mative tokens, we minimize the amount of redundant
information processed by the model.

• Enhance discriminability: The model can focus on the
most critical aspects of the input, leading to improved
performance on tasks requiring fine-grained feature anal-
ysis.

• Improve computational efficiency: Reducing the num-
ber of tokens processed helps in reducing the overall
computational cost, making the model more efficient for
both training and inference.

IV. EXPERIMENTS

A. Experiment settings

Datasets. We conduct experiments on the CARGO [15]
dataset and AG-ReID dataset [19]. Compared to AG-ReID,
the CARGO dataset offers a larger scale, greater diversity, and
is the first large-scale synthetic dataset for AGPReID. Table I
summarizes both datasets. For CARGO, 51,451 images with
2,500 IDs are used for training, and 51,024 images with 2,500
IDs for testing. Four evaluation protocols (ALL, A↔A, G↔G,
and A↔G) assess model performance, with A↔A and G↔G
testing aerial and ground data separately, and A↔G using
cross-view retrieval. The training set is consistent across all
protocols.

For AG-ReID, 11,554 images with 199 IDs are used for
training, and 12,464 images with 189 IDs for testing. Two
protocols, A→G and G→A, evaluate cross-view retrieval, with
the former testing 1,701 aerial queries against 3,331 ground
galleries, and the latter 962 ground queries against 7,204 aerial
galleries.

Evaluation Metrics. Following the common setting, we
utilize three metrics to evaluate our model: the cumulative
matching characteristic at Rank1, mean Average Precision
(mAP), and mean Inverse Negative Penalty (mINP).

B. Implementation Details

Our model is implemented using the PyTorch framework,
with experiments conducted on an NVIDIA 4090 GPU. We
use the View-decoupled Transformer (VDT) as the base-
line, which includes 12 transformer encoder blocks based on
the ViT-Base architecture, pre-trained on ImageNet with a
patch size and stride of 16×16. Input images are resized to
256×128 during preprocessing. The training process employs
the Stochastic Gradient Descent (SGD) optimizer with a cosine
learning rate decay, starting at 8 × 10−3 and reducing to
1.6 × 10−6 over 120 epochs. The batch size is set to 128,
comprising 32 identities with four images per identity. Our
token selector module features a two-head transformer encoder
that selects the top two rated tokens, integrated after the final
transformer encoder block for enhanced performance.

C. Comparisons with State-of-the-art Methods

We evaluate our proposed DTST against state-of-the-art
methods on the CARGO and AG-ReID datasets, comprising
CNN-based approaches (BoT [21], SBS [20], MGN [22],
AGW [23]) and transformer-based methods (ViT [24], VDT
[15]).
Performance on CARGO. Table II shows the results of
our proposed DTST and other competitive methods on the
CARGO dataset. The proposed DTST achieves state-of-the-art
performance. For example, DTST surpasses the mAP/Rank-
1/mINP of the baseline by 1.18%/3.13%/0.43% on the aerial-
to-ground (A↔G) protocol of CARGO. Besides, DTST also
brings different degree of benefits to other CARGO protocols.
Specifically, our proposed DTST exceeds VDT on mAP/Rank-
1/mINP by 1.51%/1.60%/2.00% on the ALL of AG-ReID.
Demonstrating the effectiveness of the Dynamic Token Se-
lective Transformer in mitigating view bias and improv-
ing identity representation. Previous view-homogeneous ReID
methods show significant performance degradation under the
view-heterogeneous AGPReID protocols, especially in cases
of considerable view variation. This decline underscores how
view bias hampers the consistency of identity features across
views. Unlike existing methods that overlook this key chal-
lenge and struggle to generalize in heterogeneous scenarios,
our approach adaptively selects the most critical tokens using
a top-k selective mechanism. This token selection not only
maintains accuracy but even enhances it, resulting in more
effective and compact long-range modeling.
Performance on AG-ReID. To further demonstrate the per-
formance of our model, we also carry out similar experiments
on the AG-ReID dataset. The outcomes are detailed in Table
III. As depicted in Table III, we compare two challenging
protocols: A→G and G→A. It is noteworthy that VDT serves
as a strong baseline. However, our proposed method, DTST,
demonstrates a significant enhancement, outperforming VDT
by 0.57% for the A→G Rank-1 protocol and 1.04% for the
G→A Rank-1 protocol. This consistent improvement suggests
that the superior performance of DTST does not stem from a
robust baseline VDT but from the proposed method itself.

D. Ablation Study

In this section, we provide ablation study to investigate
several key components of our DTST. We also delved into
the number of attention heads, token quantities, and token
positions. Notably, all ablation experiments are conducted on
the on the CARGO dataset.
Effects of Visual Token Selector (VTS). We first explore the
effectiveness with placing the Visual Token Selector before the
final layer of the View-decoupled Transformer. In this setup,
all other settings,such as the number of attention heads and
selected tokens, remain constant. Table IV shows the results,
where model-a lacks a visual token selector, whereas model-b
incorporates one. From the Table, we can observe a 5.63%
improvement in rank-1 accuracy and 1.34% increase in mAP
accuracy under Protocol A→G, which indicates that the token



TABLE I: THE DETAILED SUMMARY OF THE DATASET PROPERTIES INVOLVED IN THIS PAPER, INCLUDING
AG-ReID and CARGO.

Dataset Data #PersonID #Camera #Image #Height
AG-ReID [19] Real 388 2 (1A+1G) 21,893 15 ∼ 45m
CARGO [15] Synthetic 5,000 13 (5A+8G) 108,563 5 ∼ 75m

TABLE II: Performance comparison of the mainstream methods under four settings of the proposed CARGO dataset. “ALL”
denotes the overall retrieval performance of each method. “G↔G,” “A↔A,” and “A↔G” represent the performance of each
model in several specific retrieval patterns. Rank1, mAP, and mINP are reported (%). The best performance is shown in bold.

Method Protocol 1: ALL Protocol 2: G↔G Protocol 3: A↔A Protocol 4: A↔G

Rank1 mAP mINP Rank1 mAP mINP Rank1 mAP mINP Rank1 mAP mINP

SBS [20] 50.32 43.09 29.76 72.31 62.99 48.24 67.50 49.73 29.32 31.25 29.00 18.71
PCB [37] 51.00 44.50 32.20 74.10 67.60 55.10 55.00 44.60 27.00 34.40 30.40 20.10
BoT [21] 54.81 46.49 32.40 77.68 66.47 51.34 65.00 49.79 29.82 36.25 32.56 21.46
MGN [22] 54.81 49.08 36.52 83.93 71.05 55.20 65.00 52.96 36.78 31.87 33.47 24.64
VV [40, 41] 45.83 38.84 39.57 72.31 62.99 48.24 67.50 49.73 29.32 31.25 29.00 18.71
AGW [23] 60.26 53.44 40.22 81.25 71.66 58.09 67.50 56.48 40.40 43.57 40.90 29.39
ViT [24] 61.54 53.54 39.62 82.14 71.34 57.55 80.00 64.47 47.07 43.13 40.11 28.20
VDT [15] 62.82 54.22 39.92 79.46 70.60 57.89 82.50 64.06 44.67 47.50 42.21 29.03
DTST (Ours) 64.42 55.73 41.92 78.57 72.40 62.10 80.00 63.31 44.67 50.63 43.39 29.46

TABLE III: Quantitative evaluation of the mainstream methods
under two settings of AG-ReID dataset. “A↔G”, and “G↔A”
represent the performance in two specific patterns. Rank1,
mAP, and mINP are reported (%). Best marked in bold.

Method
Protocol 1: A→G Protocol 2: G→A

Rank1 mAP mINP Rank1 mAP mINP
SBS [20] 73.54 59.77 - 73.70 62.27 -
BoT [21] 70.01 55.47 - 71.20 58.83 -

OSNet [25] 72.59 58.32 - 74.22 60.99 -
ViT [24] 81.28 72.38 - 82.64 73.35 -

VDT [15] 82.91 74.44 51.06 83.68 75.96 49.39
DTST (ours) 83.48 74.51 49.86 84.72 76.05 50.04

TABLE IV: Ablation study of model key designs on CARGO
dataset. Rank1, mMAP, and mINP are reported(%). Best in
blod.

Method Visual Token Selector Protocol: A↔G
Rank1 mAP mINP

model-a ✘ 45.00 42.05 30.26
model-b (Ours) ✔ 50.63 43.39 29.46

selection strategy effectively filters out tokens with discrimina-
tive features and eliminates identity-irrelevant tokens, thereby
enhancing better identity representation.
Number of Heads. We also evaluate the performance of
VTS with different numbers of heads, specifically 2, 4, and
8 heads in Table V. Interestingly, using more heads results
in a decrease in accuracy. Specifically, when increasing the
number of heads from 2 to 4, there is a 3.64% decline in
rank-1 accuracy and 0.93% drop in mAP. This suggests that
a higher number of heads may dilute the model’s ability to
focus on critical identity features, potentially introducing noise
and decreasing overall model performance. One underlying

TABLE V: Ablation study on the number of attention heads,
token quantities, and token positions using the CARGO
dataset. “Head-Num.” signifies the quantity of attention heads,
“T-Num.” demotes the number of token, and “T-Position.”
indicates the specific position where each token is locate.
Performance is assessed through Rank1, mAP, and mINP(%),
with the best results highlighted in blod.

Method Head-Num. T-Num. T-Position. Protocol: A↔G
Rank1 mAP mINP

model-1 8 2 last layer 46.25 42.56 30.16
model-2 8 3 last layer 45.00 41.28 28.83
model-3 8 3 second to last layer 46.88 41.04 28.12
model-4 8 32 second to last layer 40.00 36.58 24.73
model-5 4 2 last layer 46.88 42.46 29.79

model-6 (Ours) 2 2 last layer 50.63 43.39 29.46

reason may be model over-fitting, as a greater number of heads
could increase the model’s complexity without corresponding
improvements in performance. Another potential explanation
might be that more heads may dilute the importance of the
most vital tokens, leading to less effective feature aggregation.
Number of Tokens Selected. Keeping other variables con-
stant, we analyze the impact of different numbers of token
selections on model performance in Table V. We vary the
number of tokens to 2, 3, 5. The findings reveal that selecting
2 or 3 tokens yields superior results across all evaluation
metrics, i.e. Rank-1 accuracy, mAP, and mINP. Specifically,
we increase the number of selected tokens beyond 3, but the
performance fails to show any improvement, indicating that
opting for fewer but more critical tokens enables the model
to concentrate better on pivotal identity features. In contrast,
selecting more tokens may introduce irrelevant information,
thereby compromising overall accuracy. When our method is
applied in the same setup, choosing 3 tokens compared to
2 tokens results in a decrease of 1.25% in rank-1 accuracy,



1.28% in mAP, and 1.33% in mINP, highlighting the trade-
off between token quantity and model’s focus on essential
features.
Token positions. The insertion position of VST, whether in the
last or second-to-last layer, also affects model performance, as
shown in Table V. When the fixed number of heads is 8 and
the number of tokens is 3, model-3 achieves a higher Rank-
1 accuracy at 46.88%, but both mAP and mINP decrease.
The reason behind this could be that tokens in shallow layers
contain more detailed information, while tokens in deeper
layers extract higher-level semantic information. As a result,
the information within each token becomes more refined,
leading to a higher compressibility ratio.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigate the relationships between
tokens in transformers and propose a dynamic token selective
transformer specifically for the AGReID task. Experiments
demonstrate that incorporating token selection can effectively
reduce token redundancy, enhance the importance of dis-
criminative tokens, and consequently achieve state-of-the-art
results. Furthermore, we investigated the impact of different
implementation details, the number of tokens, and the position
of token insertion on model performance, providing a com-
prehensive understanding of the influence of token selection
on AGReID. Token selection is a general technique, and we
will explore its application in other tasks. While our work
focuses on token-level selection, recent studies demonstrate the
potential of pixel-level operations [26], showing effectiveness
in tasks like object classification, masked autoencoding, and
image generation. Inspired by this, we aim to integrate token
and pixel selection to enhance the efficiency and performance
of vision models.
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